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Abstract 13 

   Himawari-8 is a new generation geostationary meteorological satellite launched 14 

by Japan Meteorological Agency (JMA). It carries the Advanced Himawari imager 15 

(AHI) onboard, which can continuously monitor high-impact weather events with 16 

high frequency space and time. The assimilation of AHI was implemented with the 17 

framework of the mesoscale numerical model WRF and its three-dimensional 18 

variational assimilation system (3DVAR) for the analysis and prediction of typhoon 19 

"Soudelor" in the Pacific Typhoon season in 2015. The effective assimilation of AHI 20 

Imager data in tropical cyclone with rapid intensify development has been 21 

realized. The results show that after assimilating the AHI imager data under clear sky 22 

conditions, the typhoon position in the background field in the model is effectively 23 

corrected compared with the control experiment without AHI data. It is found that 24 

assimilation of AHI imager data is able to improve the analyses of the water vapor 25 

and wind in typhoon inner-core region. The analyses and forecast of the typhoon 26 

minimum sea level pressure, the maximum near-surface wind speed, and the typhoon 27 

track are further improved． 28 
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 1. Introduction 32 

 In recent years, although researchers have made great progress in the field of 33 

NWP (numerical weather prediction), the huge challenges are encountered in the 34 

exact forecast of tropical cyclones (TCs) with quick intensifications (DeMaria et al., 35 

2014). The predictability of these TCs is limited because it entails complex 36 

multi-scale dynamic interactions. These interactions include environmental airflows, 37 

TC vortex interactions, atmosphere-ocean interactions, and the effects of mesoscale 38 

and micro-convective scale, together with microphysics and atmospheric radiation. In 39 

order to attain a better initial condition (IC) and improve the accuracy of forecast, data 40 

assimilation seeks to fully utilize the observations. Most of TC’s life span is over the 41 

ocean where conventional observations are relatively limited. Therefore, by analyzing 42 

observed data from the satellites and planes over the sea, it is crucial to adopt 43 

effective data assimilation (DA) methods to improve the analysis and forecast of TCs. 44 

 With the rapid development of atmospheric radiative transfer model (RTM), 45 

many numerical forecast centers now can adopt variational DA method to assimilate a 46 

variety of radiance data from different satellite observation instruments directly 47 

(Bauer et al., 2011; Buehner et al., 2016; Derber et al., 1998; Hilton et al., 2009; 48 

Kazumori et al., 2014; McNally et al., 2006; Prunet et al., 2000; Pennie, 2010). These 49 

data can take up 90% of all data used in global DA system and can improve NWP 50 

technique strikingly (Bauer et al., 2010). Some related researches demonstrated that in 51 

global model, satellite radiance DA makes more contributions to forecast accuracy 52 
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than conventional observation DA (Zapotocny et al., 2007). 53 

 Generally speaking, radiance data is derived from microwave and infrared 54 

detecting instruments, which are from polar-orbit satellites and geostationary satellites, 55 

respectively. Polar-orbit satellites cover the sphere of all the earth, so their 56 

observations are suitable for global numerical forecast models (Jung et al., 2008). 57 

Besides, compared to geostationary satellites, they have higher resolutions (Li et al., 58 

2017; Shen et al., 2015; Xu et al., 2013). However, it is highlighted that they are not 59 

able to perform continuous observation over a fixed area, so this can leave out some 60 

quickly intensified TCs or storms. On the contrary, because geostationary satellites 61 

have a fixed location related to the earth’s surface, although their resolutions are lower 62 

than polar-orbit satellites, they can capture the formation and development of 63 

mesoscale systems by continuous monitoring (Montmerle et al., 2007; Stengel et al., 64 

2009; Zou et al.,2011). 65 

 Geostationary satellites are able to continuously detect a region at a higher 66 

frequency, thus supervising TCs over the vast ocean effectively. In fact, they can 67 

capture convective spiral cloud systems relating to TCs and act as an important role in 68 

TC’s optimum observational position. As the first new generational geostationary 69 

satellite, Himawari-8 was launched successfully in Sep 2014 by JMA (Japan 70 

Meteorological Agency) and put into operation in July 2015 (Bessho et al., 2016). It 71 

has an advanced imager called AHI (Advanced Himawari Imager) with 16 visible and 72 

infrared bands, including 3 moisture channels, which can conduct a full-disk scan 73 
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every 10 minutes. Meanwhile, it can also acquire regional scan images and that is to 74 

say it can scan the Japan and the target areas every 2.5 minutes. Compared to the early 75 

geosynchronous imagers, AHI has more spectrum bands and this can monitor the state 76 

of atmosphere with a higher frequency.  77 

 In recent years, some experts and scholars have carried out some researches on 78 

geostationary satellite observation DA. Firstly utilizing GSI (Gridpoint Statistical 79 

Interpolation) from NCEP (National Centers for Environmental Prediction), Zou, et al 80 

(2011) conducted direct assimilation on imagers’ data from GOES-11 and GOES-12 81 

to estimate their potential influences on QPF (quantitative precipitation forecasts) of 82 

coastal regions in the eastern part of American. They found assimilating radiance data 83 

from GOES’s imager has a remarkable improvement on 6 to 12 hour’s QPF near 84 

northern Mexico Gulf coast. Their work was continued by Qin, et al (2013), which 85 

put thinned radiance data into GSI assimilation system to make a comprehensive 86 

investigation on the issue on combined assimilation of GOES Imager data together 87 

with AMSU-A (Advance Microwave Sounding Unit-A), AMSU-B (Advance 88 

Microwave Sounding Unit-B), AIRS, MHS (Microwave Humidity Sounder), HIRS 89 

(High Resolution Infrared Radiation Sounder), GSN (GOES Sounder). The results 90 

showed the effect of single assimilation of AHI data is better than combined 91 

assimilation in term of precipitation forecast. Zou, et al (2015) adopted GSI system to 92 

assimilate radiance data from four infrared channels on GOES-13/15 and set up two 93 

experiments for comparison. A symmetric vortex was used for initialization in the first 94 
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trial and an asymmetric counterpart for the other trial. Results showed that direct 95 

assimilation of GOES-13/15’s radiance data could generate continuous positive 96 

effects on the track and intensity forecasts of tropical storm “Debbie” and this impact 97 

was derived from assimilation of GOES radiance along with asymmetric vortex 98 

initialization. Because himawari-8 has not been in operation for a long time, there are 99 

few studies on himawari-8 data. Ma, et al (2017) used 4DEnVar (4D ensemble 100 

variational data assimilation) in NCEP’s GSI system to assimilate radiance of three 101 

moisture channels of AHI under clear-sky condition and then NCEP GFS (Global 102 

Forecast System) was utilized to estimate the impacts of AHI assimilation on whether 103 

analysis and forecast. They found it had a positive influence on the forecast of global 104 

vapor at high level of troposphere. Wang, et al (2018), based on 3DVAR system in 105 

NWP center in northeast China operated by Liaoning Meteorological Bureau, firstly 106 

attempted to conduct convective scale assimilation of AHI three moisture channels’ 107 

radiance data to study its impacts on the analysis and forecast of a rainstorm in 108 

Northern China on 19th of Sep. It turned out that the assimilation of AHI radiance 109 

could improve the simulated wind and vapor fields and the accuracy of rainfall 110 

forecast in the first 6 hours obviously. 111 

 Although former researches have made several achievements in satellite data 112 

assimilation and application, it is still a challenge to make more effective use of the 113 

new generational geostationary satellite imager data with high spatial and temporal 114 

resolution so that it can better satisfy the needs of meteorology. In most previous 115 
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studies, researches usually use a 6 hour’s or even longer time interval with a coarse 116 

spatial resolution. Therefore, until now hourly fast updating assimilation technique of 117 

the stationary satellite radiance data in the convective scale in term of the analyses 118 

and prediction of tropical cyclones has not been well carried out. This paper intends to 119 

employ the new generational mesoscale WRF model and build an assimilation system 120 

aimed at AHI imager data. Then a case of typhoon Soudelor is studied by performing 121 

numerical simulation to address the impacts of convective assimilation on the 122 

improvement of TC’s IC and the enhancement of TC’s track and intensity forecast. 123 

2. Observational data and DA system 124 

2.1 An introduction to Himawari-8 AHI radiance data 125 

 Himawari-8 satellite was launched by JMA (Japan Meteorological Agency) to a 126 

geosynchronous orbit on 17 October 2014 and has begun its operational use since 7 127 

July 2015. It is the first satellite of all new generational geosynchronous 128 

meteorological satellites and plays a pioneering role for the geosynchronous imagers 129 

to be launched in US, China, Korea and Europe. Himawari-8 is located between the 130 

equator and 140.7°E, so the earth is observed between 60°N and 60°S meridionally 131 

and between 80°E and 160°W zonally. Compared to its previous generation 132 

Himawari-7, its detective ability can get remarkably improved since the instrument 133 

AHI on Himawari-8. Besides, its device is comparable to imagers on American 134 

GOES-R satellite (Goodman et al., 2012; Schmit et al., 2005; Schmit et al., 2008; 135 

Schmit et al., 2017). AHI is able to provide a full-disk image every 10 minutes and 136 
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complete a scan over Japan every 2.5 minutes. AHI conducts continuous scan and 137 

detection on a moving targeted typhoon. It has 16 channels covering visible, 138 

near-infrared, and infrared spectral bands with a resolution of 0.5 km or 1 km, 0.5 km 139 

or 1 km, and 2 km respectively. Channel 8 to 10 (6.2, 6.9, and 7.3 μm) are water vapor 140 

bands that are sensitive to the humidity in the middle and upper troposphere (Di et al., 141 

2016). Other channels (channel 11, 12, 16: 8.6 μm, 9.6 μm, and 13.3μm ) are either 142 

monitoring other fields such as the thin ice clouds, volcanic SO2 gas, the ozone or 143 

CO2, or the atmospheric window channels (13-15: 10.4, 11.2, and 12.4 μm) function 144 

as monitors for ice crystal/water, low water vapor, volcanic ash, SST (Sea Surface 145 

Temperature) and other phenomena (Bessho et al., 2016). 146 

 Our work focuses mainly on assimilating the three moisture channels (6.2, 6.9, 147 

and 7.3μm) since they are very sensitive to the humidity in the middle and upper 148 

troposphere and have a certain effect on the lower troposphere. Thus, a large amount 149 

of effective atmospheric information can be provided for AHI radiance data 150 

assimilation in the troposphere. 151 

2.2 WRFDA system and AHI assimilation module 152 

 WRFDA system is designed by National Center for Atmospheric Research 153 

(NCAR) and it contains 3DVAR, 4DVAR, Hybrid parts. Our research is based on the 154 

3DVAR method. An interface that is suitable for AHI DA is built in WRFDA system. 155 

Currently, WRFDA is able to assimilate many conventional and unconventional 156 

observation. In terms of satellite radiance observation, this system is compatible with 157 

RTTOV (the Radiative Transfer model of the Television and Infrared Observational 158 
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Satellite (TIROS) Operational Vertical sounder) and CRTM (Community Radiative 159 

Transfer Model) as observational operators. In this paper, CRTM is utilized as the 160 

observational operator to simulate and compute AHI radiance data. Estimating the 161 

systematic bias and random error of the observation data caused by the errors of 162 

numerical models and instruments is the key to directly assimilate the satellite 163 

radiance data. Apart from eliminating cloud pixels, other procedures to conduct 164 

quality control are as follows. (1) when reading the data, remove the observed outliers 165 

with the observed values below 50 K or above 550 K; (2) only the marine 166 

observations are applied by removing the observation on the land and the more 167 

complex observation points on the ocean surface; (3) remove observations when the 168 

observation minus the background simulation is larger than 3 times of the observation 169 

error; (4) the pixel point is removed when the CLW calculated by the background 170 

field of the numerical model is greater than or equal to 0.2 kg/m2; (5) eliminate the 171 

data when the observed value minus the background simulation value is greater than 5 172 

K; (6) only vapor channels 8, 9, 10 on AHI are assimilated (Wang et al., 2018).  173 

 By using 3DVar algorithm, the assumption is that there is no bias between 174 

observation and background (Dee et al., 2009; Liu et al., 2012; Zhu et al., 2014). A 175 

bias correction scheme for observation is essential before DA. Usually, radiance bias 176 

can be obtained by a linear combination of a set of forward operators. 177 

( ) ( ) 
=

++=
pN

i

ii pxHxH
1

0

~

,                   （1） 178 

 Here, ( )xH  represents the initial observation operator (before the bias 179 

correction), x represents the mode state vector, 0  represents a constant component 180 

of the total bias (constant part), ip
 and i  represent the i-th predictor and its 181 

coefficient respectively. In this study, four potentially state-dependent predictors 182 
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(1,000–300 hPa and 200–50 hPa layer thicknesses, surface skin temperature, and total 183 

column water vapor) are applied. The variational bias correction (VarBC) scheme is 184 

utilized to update the bias correction coefficient variationally with the new 185 

observation operator considered in the cost function of 3DVar. 186 

 187 

3. Introduction to the case and experimental design 188 

3.1 Typhoon Soudelor 189 

 Typhoon Soudelor, that was happened in August, was the 13th typhoon in 2015 190 

and became the second strongest tropical cyclone in this year. At 1200 UTC 30 July 191 

2015, it formed at northwest Pacific Ocean as a tropical storm, located at 13.6°N, 192 

159.2°E, then moved west by north. It upgraded to a strong tropical storm at 2100 193 

UTC 1 August. Afterwards, it went through a process of rapid intensification. It 194 

became a typhoon at 0900 UTC 2 August, a strong typhoon at 2100 UTC 2 August, a 195 

super typhoon at 0900 UTC 3 August. Then it weakened to a strong typhoon in the 196 

morning on August 5. However, it intensified to a super typhoon again at 1200 UTC 7 197 

August with a maximum speed of 52 m/s, moving west by north, and its intensity 198 

raised to its second peak. It was reduced to a strong typhoon again at 1800 UTC 7 199 

August. It decreased to a typhoon, entering to Taiwan channel. It landed again as a 200 

typhoon at 1410 UTC on the coast of Fujian province, China. Owing to continuous 201 

orographic friction, it decreased to a tropical depression. Fig 1 shows the track of 202 

Soudelor and different color lines represent typhoon’s maximum wind speed. It is 203 
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displayed that after the formation of typhoon, its track is relatively stable. After July 204 

30, its main body moved west by north at a speed of about 20 km/h. Its moving 205 

tendency changed slightly within 10 days of its generation. However, its intensity 206 

went through a rapid intensification, a weakening, a second intensification, then a 207 

continuous weakening till disappearing gradually after landing Chinese mainland. Fig 208 

2 demonstrates the variation of typhoon’s intensity from July 31 to August 5. It is 209 

shown that typhoon’s maximum wind speed increased fast, while its minimum sea 210 

level pressure decreased sharply. This was the stage of typhoon’s rapid intensification. 211 

We choose the date from August 1 to August 3 during its rapid intensification as our 212 

research object. 213 

3.2 Experimental design 214 

 Two experiments are designed to test the effects of AHI radiance data direct 215 

assimilation on the analysis and forecast of Typhoon Soudelor starting from 1800 216 

UTC 1 August to 0000 UTC 3 August. WRF 3.9.1 is employed as the forecast model 217 

in our trial. We use Arakawa C grid in the horizon with a 5 km grid distance. 218 

Vertically, it has 41 levels with 10 hPa as its top. Model center is (17.5 °N, 140 °E) 219 

(Fig 4). Initial condition and lateral boundary are provided by 0.5°×0.5° GFS 220 

reanalysis data. The following parameterization schemes are used: WDM6 221 

microphysics scheme (Lim et al., 2010), Grell Devenyi cumulus parameterization 222 

scheme (Grell et al., 2002), RRTM (Rapid Radiative Transfer Model) scheme 223 

(Mlawer et al., 1997) and Dudhia scheme for longwave and shortwave radiation 224 
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respectively. Besides, YSU boundary layer scheme (Noh et al., 2003), Noah land 225 

surface scheme are included.  226 

   The experimental procedures are illustrated by Fig. 3. Firstly, a 6 hour’s spin-up 227 

conducted at 1800 UTC 1 August before the forecast at 0000 UTC 2 August is used as 228 

the background field for the assimilation. The first experiment is assimilating GTS 229 

(Global Telecommunications System) conventional data (including aircraft report, 230 

ship report, sounding report, satellite cloud wind data, ground station data) only, 231 

which is called control experiment (CTNL). Another experiment is configured with 232 

AHI radiance data assimilation (AHI_DA). AHI radiance data is assimilated hourly 233 

further from 0000 UTC to 0600 UTC on August 2. Afterwards, an 18 hours forecast is 234 

launched as the deterministic forecast. The climatological background error (BE) 235 

statistics are estimated using the National Meteorological Center (NMC) method. 236 

There are 5 control variables applied in this project including U component, V 237 

component, full temperature (T), full surface pressure (Ps), and pseudo-relative 238 

humidity (RHs). The observation error for each channel is estimated based on the O-B 239 

from 0000 UTC on August 1, 2015 to 0000 UTC on August 3, 2015 every 6 hours. 240 

Fig. 4 is the distribution of GTS observation data at the simulated domain at 241 

0000 UTC 2 August. To avoid latent correlation among adjacent observation, we 242 

choose 20 km to rarefy AHI observation data. 243 

4. Results 244 

4.1 Minimization iterations 245 

 Fig. 5 shows the change of cost function and gradient with the iteration times. 246 

There is an obvious exponential decrease curve in Fig 5a, while Fig 5b shows gradient 247 

decreases with the increase of iteration times. Taking Fig. 5a as an example, cost 248 
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function decreases very remarkably in the first 10 iterations. However, after 30 times 249 

of iteration, the cost function curve becomes smooth gradually since only in the first 250 

iteration, the differences between background field and observation are largest. With 251 

continuous iterations, background field goes through continued adjustments. Finally, 252 

the cost function tends to reach a stable minimum that represents the point when cost 253 

function has its optimal solution. Besides, the gradient in Fig. 5b decreases stably as 254 

the number of times of iteration. The exponential decline of the cost function and the 255 

change trend of its gradient indicate that the assimilation effect is satisfying. The final 256 

iterated analytical field is close to the observation. 257 

4.2 Analytical results of the brightness temperature 258 

 Fig. 6 shows the distribution of observed brightness temperature, simulated 259 

background brightness temperature, and simulated analytical field brightness 260 

temperature of channel 8, 9, and 10 of AHI at 0000 UTC 2 August 2015. Fig. 6a is the 261 

distribution of brightness temperature on channel 8 of AHI. The spiral cloud belt and 262 

the eye area of Typhoon Soudelor are vividly shown with 49691 data counts. Fig. 6b 263 

is a simulated distribution of background brightness temperature of AHI channel 8 by 264 

model and it is generated by a 6 hours’ deterministic prediction starting at 1800 UTC 265 

1 August 2015. Although typhoon’s spiral cloud belt and eye area are clear in the 266 

background field, compared to observed distribution of brightness temperature, there 267 

also exist some deviations. It can be seen from the background field and the typhoon 268 

core area that the overall magnitude of the brightness temperature is higher than the 269 
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observation. This is mainly caused by a weaker simulated typhoon intensity in the 270 

background than observation. Fig. 6c is the distribution of brightness temperature 271 

after assimilating AHI radiance data. Spiral cloud belt structure of typhoon is clearly 272 

displayed and the overall magnitude of the brightness temperature is similar to the 273 

observation, indicating that assimilation of AHI radiance data can improve the 274 

analysis of temperature and moisture remarkably. Fig. 6d, e, and f are the observed 275 

brightness temperature of AHI channel 9, the simulated brightness temperature of 276 

background field, and the simulated brightness temperature of analysis field, 277 

respectively. We can find a similar phenomenon: compared to observation, a higher 278 

background brightness temperature exists, while the simulated background brightness 279 

by analytical field fits closer to the observation. Fig. 6g, h, i represent observational 280 

brightness temperature, simulated background brightness temperature, and simulated 281 

analytical brightness temperature on channel 10, respectively, and they have similar 282 

effects as channel 8 and 9. Generally, the brightness temperature distribution of the 283 

three channels is different mainly because the three channels have distinct absorptive 284 

bands. From the spiral cloud belt region (orange) of the background field, obviously 285 

the simulated background brightness temperature of three channels is higher than 286 

corresponding observation, while after assimilating AHI radiance data, compared to 287 

background brightness temperature, simulated analytical brightness temperature is 288 

closer to the observation. 289 

 Fig. 6 shows the distribution of observed brightness temperature minus 290 
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background brightness temperature (OMB) and the observed brightness temperature 291 

minus analytical brightness temperature (OMA) after the bias correction of AHI 292 

radiance data from channel 8, 9, and 10 at 0000 UTC 2 August 2015. Fig. 6a is the 293 

distribution of OMB brightness temperature after the bias correction. In the figure, 294 

part of typhoon’s spiral cloud belt is clearly visible. The brightness temperature in 295 

typhoon’s core area is low, while the brightness temperature in other areas is high. 296 

The mean of observed OMB was -4.65 K, indicating that the background brightness 297 

temperature is higher than the observation. Fig. 6b shows that the OMA value of most 298 

pixels are below 0.02 K, indicating that the analytical field fitting the observation 299 

after analyzing. It can be inferred from Fig. 6a, c, and e that the magnitude in OMB of 300 

channel 10 is generally larger than that of channel 9, while that of the OMB of 301 

channel 8 is the smallest. This is because the detection height of channel 10 is lower 302 

than that of channel 8 and 9, which is most greatly affected by the cloud. Conversely, 303 

the weight peak of the channel 8 is the highest, being the channel least affected by the 304 

cloud. In general, the analytical brightness temperature match well with the observed 305 

brightness temperature of all the three water vapor channels after the assimilation of 306 

AHI radiance data. 307 

 Fig. 7 illustrates the effect of the bias correction for AHI radiance data at 0000 308 

UTC 2 August 2015. Fig. 7a, d, g are the scatter plots of the observed brightness 309 

temperature and the background brightness temperature field before the bias 310 

correction. The abscissa represents the observed brightness temperature and the 311 

https://doi.org/10.5194/nhess-2020-120
Preprint. Discussion started: 20 April 2020
c© Author(s) 2020. CC BY 4.0 License.



16 

 

ordinate represents the background brightness temperature simulated by CRTM 312 

observation operator according to the mode background field. Fig. 7b, e, h are results 313 

after bias correction, Fig. 7c, f, i are the scatter plots of observed brightness 314 

temperature and analytical brightness temperature after bias correction. From Fig. 7a, 315 

before the bias correction, the values from the observation and the background are 316 

compariable, but most of the scatter points are below the diagonal line. This suggests 317 

that the observed brightness temperature is higher than the background simulated 318 

brightness temperature. From Fig. 7b, after the bias correction, observed warm bias is 319 

corrected to some degree. From Fig. 7a, b, after the bias correction, the root mean 320 

square error (RMSE) of OMB decreases from 1.864 K to 1.627 K, with the average 321 

decreasing from 0.956 K to 0.358 K, proving the validity and rationality of the 322 

variational bias correction. Compared to the result of Fig. 7b, the scatters in Fig. 7c 323 

are more symmetrical, fitting closely to the diagonal line. The mean and RMSE were 324 

also significantly reduced, suggesting that the analytical field is more similar to 325 

observation than background field. Channel 9, 10 have a similar result, but with a 326 

significantly reduced mean and RMSE, indicating that the background field and 327 

analytical field of channel 9, 10 match better with the observation than channel 8 does. 328 

Among them the RMSE of channel 10 reaches the minimum. In Fig. 7i, the RMSE of 329 

channel 10 analytical field is only 0.234 K.  330 

 Fig. 8 shows the observation number, the mean, and the standard deviation of 331 

OMB and OMA of assimilation channel 8, 9, and 10 before and after bias correction. 332 
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It can be seen from the figure that after quality control, 24057, 24181, 21785 333 

observation data enter the assimilation system in channel 8, 9, and 10, respectively. 334 

From the mean value of OMB before the bias correction, the value of the three 335 

channels is relatively small, indicating that the simulated brightness temperature of 336 

the three channels is close to the actual brightness temperature. The lowest mean of 337 

0.3 K is found in channel 10, indicating that the simulated brightness temperature of 338 

channel 10 is closest to the observed brightness temperature. Bias correction 339 

effectively corrects the systematic bias and reduces the mean value of observation 340 

residuals. After the bias correction, the OMB mean value of the three channels 341 

significantly decreases to nearly 0 K. With the bias correction, the simulated 342 

brightness temperature is almost the same as the observed brightness temperature. The 343 

analysis of the standard deviation of OMB shows that the results are compariable 344 

before and after the bias correction, indicating that the bias correction basically does 345 

not change the spread of OMB. The standard deviation of OMA decreases by about 346 

80% compared to OMB, indicating that the error distribution is greatly improved after 347 

assimilation. 348 

 The RMSEs of the simulated brightness temperature by the model before 349 

assimilation and assimilation against the observation is also calculated. Fig. 9 shows 350 

the above RMSEs during the assimilation time for channels 8, 9, 10. As can be seen 351 

from Fig. 9, RMSE decreases after each analysis of the AHI assimilation experiment 352 

compared with the previous one. The most significant improvement is from the first 353 
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analysis moment of channel 8, where RMSE of the brightness temperature after 354 

assimilation significantly decreases from 1.64 K to 0.46 K, possibly due to the largest 355 

observation increment at the first analytical time. The one hour forecast after the 356 

analysis basically makes brightness temperature of RMSE increase. Overall, the effect 357 

of the analysis of the channel 10 is most significant. 358 

4.3 Analysis of the typhoon structure 359 

 Fig. 10 shows the wind field at sea level and the distribution of water vapor at 360 

0000 UTC 2 August 2015. The obvious cyclonic eddy circulation structures in the 361 

core area of the typhoon are found in both fields, while the anti-cyclonic circulation 362 

exists in the northwest quadrant of the typhoon. The mixing ratio of water vapor in the 363 

region where the typhoon is located is very high and the wind field is cyclonic, 364 

indicating that the typhoon has a continuous water vapor advection. This is conducive 365 

to the enhancement of typhoon. According to the flow field of the control experiment 366 

in Fig. 10a, it can be seen that the water vapor convergence in the center of the 367 

typhoon region is weak with the low intensity, and the water vapor convergence zone 368 

is small. As can be seen from Fig. 10b, after the assimilation of AHI radiance data, the 369 

streamlines in the typhoon region become denser, indicating that the cyclonic 370 

circulation is strengthened. Compared to the control experiment, the intensity and 371 

distribution of the moisture convergence zone after the assimilation of AHI radiance 372 

data are also more beneficial to the development of typhoon. This suggests that the 373 

assimilation of AHI radiance data is able to significantly improve the large-scale 374 
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environmental field in the simulation region of the typhoon system. 375 

4.4 Track forecast 376 

 In order to further evaluate the effect of AHI radiance assimilation, a 18-hour 377 

deterministic forecast is launched at the end of two assimilation experiments. As can 378 

be seen in Fig. 11a, at the beginning of the forecast, the initial location of the typhoon 379 

of the two trials has a large bias. The location of the typhoon in the control experiment 380 

has a relative east-southward bias, while the location of the typhoon in AHI_DA trial 381 

is relatively close to the observation. During the following 6-hour forecast, the 382 

typhoon track predicted by the CTNL continues moving west-south with the 383 

environmental wind, while the track simulated by AHI_DA experiment match better 384 

with the best track than that of the CTNL. In summary, the track of AHI_DA trial is 385 

closest to the observation track during the entire 18-hour deterministic forecast. Fig. 386 

11b is the typhoon track error predicted by the two experiments. At the initial time of 387 

prediction, the track errors of CTNL and AHI_DA are significantly different, with 388 

magnitude of 63.2km and 16.7km, respectively. During the subsequent 18-hour 389 

forecast, the track error of the CTNL gradually increases with the forecast time 390 

reaching 232.5km at the end of the forecast. In contrast, the track error of AHI_DA 391 

experiment is better controlled within 95 km during the entire 18-hour deterministic 392 

prediction process. In general, the average track error of the CTNL is 123.46 km, and 393 

the average track error of AHI_DA experiment is 53 km, indicating a significant 394 

improvement in the track prediction. 395 
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 Fig. 12 discusses the time series of the typhoon intensity from the two 396 

experiments with the maximum surface wind speed and minimum sea level pressure 397 

(SLP) shown in Fig. 12a and Fig. 12b respectively. It can be seen that the maximum 398 

near surface wind speed predicted by the CTNL is much lower than the actual wind 399 

speed, mainly because the overall strength of Typhoon Soudelor simulated in the 400 

background field of the model is relatively weaker. The maximum near surface wind 401 

speed predicted by AHI_DA experiment fit closer to the best track with the maximum 402 

difference about 2.6m /s after 12 hours forecast. In, Fig. 12b, the results of the 403 

minimum SLP are consistent with Fig. 12a.  404 

5. Conclusion 405 

An interface for AHI data assimilation on the WRFDA system based on the 406 

3DVAR assimilation method was built. Based on the Typhoon Soudelor in 2015, two 407 

assimilation experiments for comparison was designed to examine the impact of AHI 408 

moisture channel radiance data assimilation on the analysis and prediction of the rapid 409 

development stage of typhoon under the condition of clear sky. Following conclusions 410 

are obtained: 411 

(1) The AHI imager on the new generation of geostationary meteorological satellite is 412 

able to reflect the structure of Typhoon Soudelor very clearly. After a series of 413 

pre-procedures such as the quality control, the bias correction, contaminated pixel 414 

data is able to effectively be eliminated, ensuring the validity and rationality of the 415 

observation data. The bias from the observations are also eliminated from the VarBC 416 
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statistical method, which is able to provide a positive impact on the data assimilation 417 

procedure for the typhoon numerical simulation.  418 

(2) Compared with the control experiment with the GTS data assimilation, the 419 

3DVAR assimilation performed with AHI radiance data on top of the GTS data is able 420 

to improve the structure of typhoon’s core and outer rainband. Also, the position and 421 

intensity of typhoon in the background field are able to be corrected. 422 

(3) Compared to the predicted intensity and track of the control experiment and the 423 

best track, it is found that the track, maximum wind speed, and minimum sea level 424 

pressure from the AHI radiance data assimilation experiment are more similar to the 425 

observation than the control experiment for the subsequent 18-hour forecast. 426 

 This paper realizes the AHI moisture channel radiance data assimilation under the 427 

condition of clear sky. The results of the experiments indicate that AHI data 428 

assimilation has a positive effect on the analysis and prediction of typhoon of the 429 

rapid development stage of Typhoon Soudelor. Considering the complex influence of 430 

underlying surface, only the rapid development stage of typhoon at sea were studied, 431 

while the whole generation, development and disappearance stage of typhoon can also 432 

be studied in the future. In addition, based on the AHI data of the water vapor 433 

channels under the condition of clear sky, only 3DVAR method was adopted. Further 434 

improvements under the condition of all sky and hybrid can be obtained in the future. 435 

 436 
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List of Figures  556 

 557 

Fig.1 The track of Typhoon "Soudelor" in August 2015. Different colors represent 558 

intensity changes. 559 

 560 
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Fig.2 The time series of the minimum sea level pressure (solid line, unit: hPa) and the 561 

maximum wind speed (dash line, unit: m/s) from July 31, 2015 to August 5, 2015. 562 

 563 

 564 

Fig. 3 The flow chart of experiments: (a) represents CTNL while (b) represents 565 

AHI_DA 566 

 567 

Fig. 4 Distribution of GTS in the simulated area at 0000 UTC 2 August 2015. On the 568 

right side of the map is the name of observation data and the number of observations. 569 
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 570 

 571 

Fig. 5 (a) is a schematic diagram of the change of cost function with the number of 572 

iterations, and (b) is a schematic diagram of the change of gradient with the number of 573 

iterations. 574 

           575 

            576 
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 577 

 578 

Fig. 6 (a, c, and e) represent OMB (unit: K) after bias correction for channel 8, 9, and 579 

10, respectively; (b, d, and f) represent OMA (unit: K) after bias correction for 580 

channel 8, 9, and 10, respectively at 0000 UTC 2 August 2015.  581 
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 582 

Fig. 7 Scatter plots of (a, d and g) the observed and background brightness 583 

temperature before the bias correction of channel 8, 9 and 10. Scatter plots of (b, e 584 

and h) the observed and background brightness temperature after the bias correction 585 

of channel 8, 9 and 10. Scatter plots of (c, f and i) the observed and analyzed 586 

brightness temperature after the bias correction of channel 8, 9 and 10. 587 
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 588 

Fig. 8 Number of (a) observations, (b) mean (unit: K), and (c) standard deviations 589 

(unit: K) of OMB and OMA before and after bias correction for water vapor channel 590 

8-10 assimilation (OMB_nb: OMB without bias correction; OMB_wb: OMB with 591 

bias correction). 592 
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 593 

Fig. 9 Time series of the RMSE for the brightness temperature (unit: K) with 594 

assimilation times before and after the data assimilation. 595 

a) 

 

b) 

 

Fig. 10 The surface wind speed (vectors, unit: m/s) and water vapor (colored, unit: 596 

g/kg) for (a) CTNL; (b) AHI_DA at 0000 UTC 2 August 2015. 597 

 598 
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 599 

Fig. 11 The 18-hour (a) predicted tracks and the best track, (b) track errors (unit: m/s) 600 

of Soulder from 0600 UTC 2 to 0000 UTC 3 August 2015. 601 

 602 

Fig.12 The 18-hour predicted (a) maximum surface wind speed (unit: m/s)，(b) 603 

minimum SLP (unit: hPa) of Soulder from 0600 UTC 2 to 0000 UTC 3 August 2015. 604 

 605 
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